A Multi-Frequency SDR-Based GBSAR: System Overview and First Results

Amézaga, Adrià; López-Martínez, Carlos; Jové, Roger. 2021. “A Multi-Frequency SDR-Based GBSAR: System Overview and First Results” MDPI Remote Sens. 13, no. 9: 1613

➲ Open access full paper

Summary

This work describes a system-level overview of a multi-frequency GBSAR built around a high performance software defined radio (SDR). The main goal of the instrument is to be employed as a demonstrator and experimental platform for multi-frequency GBSAR campaigns. The system is capable of operating in P, L, C and X-bands, and signal generation and digital signal processing are customizable and reconfigurable through software. An overview of the software and hardware and implementations of the system are presented. The operation of the system is demonstrated with two measuring campaigns showing focused amplitude images at different frequencies. It is shown how the usage of SDR for GBSAR systems is a viable design option.

GBSAR system and |S_{vv}| images at P-, L-, C- & X-bands.

Second Multi-Frequency GBSAR Test Campaing, Castell de Subirats, Spain

In June 22nd, 2020, we continued the field test of our new multi-frequency GBSAR system, developed in a joint effort of Balamis and the Remote Sensing Laboratory of the Universitat Politècnica de Catalunya, as the PhD of Adrià Amézaga under the aegis of the Industrial Doctorate Programs of the Generalitat de Catalunya and the Spanish Ministry of Science, Innovation and Universities.

This time, the system was fully operational and we tested its performances for forest monitoring at X-, C-, L-band frequencies and finally P-band. The test area is located right next to the Castell de Subirats (Subirats Castle), in the outskirts of the Barcelona city.

The video below shows the four 3-hour time-series of |S_{vv}| images at X-, C-, L- and P-band frequencies measured this day.  One can observe how signal stability increases as the frequency gets lower. This demonstrates that vegetation is transparent at lower frequencies, mainly L- and P-band, so we are observing the soil and the rocky structures under the vegetation.