Large-Scale automatic vessel monitoring based on dual-polarization Sentinel-1 and AIS data

Pelich, R.; Chini, M.; Hostache, R.; Matgen, P.; Lopez-Martinez, C.; Nuevo, M.; Ries, P.; Eiden, G. “Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization Sentinel-1 and AIS Data”. Remote Sens. 201911, 1078.

➲ Open access full paper

Summary

This research addresses the use of dual-polarimetric descriptors for automatic large-scale ship detection and characterization from synthetic aperture radar (SAR) data. Ship detection is usually performed independently on each polarization channel and the detection results are merged subsequently. In this study, we propose to make use of the complex coherence between the two polarization channels of Sentinel-1 and to perform vessel detection in this domain. Therefore, an automatic algorithm, based on the dual-polarization coherence, and applicable to entire large scale SAR scenes in a timely manner, is developed. Automatic identification system (AIS) data are used for an extensive and also large scale cross-comparison with the SAR-based detections. The comparative assessment allows us to evaluate the added-value of the dual-polarization complex coherence, with respect to SAR intensity images in ship detection, as well as the SAR detection performances depending on a vessel’s size. The proposed methodology is justified statistically and tested on Sentinel-1 data acquired over two different and contrasting, in terms of traffic conditions, areas: the English Channel the and Pacific coastline of Mexico. The results indicate a very high SAR detection rate, i.e., >80%, for vessels larger than 60 m and a decrease of detection rate up to 40% for smaller size vessels. In addition, the analysis highlights many SAR detections without corresponding AIS positions, indicating the complementarity of SAR with respect to cooperative sources for detecting dark vessels.

Towards a 20 m Global Building Map from Sentinel-1 SAR Data

Chini, M.; Pelich, R.; Hostache, R.; Matgen, P.; Lopez-Martinez, C. “Towards a 20 m Global Building Map from Sentinel-1 SAR Data”. Remote Sens. 201810, 1833.

➲ Open access full paper

Summary

This study introduces a technique for automatically mapping built-up areas using synthetic aperture radar (SAR) backscattering intensity and interferometric multi-temporal coherence generated from Sentinel-1 data in the framework of the Copernicus program. The underlying hypothesis is that, in SAR images, built-up areas exhibit very high backscattering values that are coherent in time. Several particular characteristics of the Sentinel-1 satellite mission are put to good use, such as its high revisit time, the availability of dual-polarized data, and its small orbital tube. The newly developed algorithm is based on an adaptive parametric thresholding that first identifies pixels with high backscattering values in both VV and VH polarimetric channels. The interferometric SAR coherence is then used to reduce false alarms. These are caused by land cover classes (other than buildings) that are characterized by high backscattering values that are not coherent in time (e.g., certain types of vegetated areas). The algorithm was tested on Sentinel-1 Interferometric Wide Swath data from five different test sites located in semiarid and arid regions in the Mediterranean region and Northern Africa. The resulting building maps were compared with the Global Urban Footprint (GUF) derived from the TerraSAR-X mission data and, on average, a 92% agreement was obtained.