A Model-free Four Component Scattering Power Decomposition for Polarimetric SAR Data

S. Dey, A. Bhattacharya, A. C. Frery, C. López-Martínez and Y. S. Rao, “A Model-free Four Component Scattering Power Decomposition for Polarimetric SAR Data,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Early Access, 2021

➲ Full paper


Target decomposition methods of polarimetric Synthetic Aperture Radar (PolSAR) data explain scattering information from a target. In this regard, several conventional model-based methods utilize scattering power components to analyze polarimetric SAR data. However, the typical hierarchical process to enumerate power components uses various branching conditions, leading to several limitations. These techniques assume \textit{ad hoc} scattering models within a radar resolution cell. Therefore, the use of several models makes the computation of scattering powers ambiguous. Some common issues of model-based decompositions are related to the compensation of the orientation angle about the radar line of sight and the negative power components’ occurrence. We propose a model-free four-component scattering power decomposition that alleviates these issues. In the proposed approach, we use the non-conventional 3D Barakat degree of polarization to obtain the scattered electromagnetic wave’s polarization state. The degree of polarization is used to obtain the even-bounce, odd-bounce, and diffused scattering power components. Along with this, a measure of target scattering asymmetry is also proposed, which is then suitably utilized to obtain the helicity power. All the power components are roll-invariant, non-negative and unambiguous. In addition to this, we propose an unsupervised clustering technique that preserves the dominance of the scattering power components for different targets. This clustering technique assists in understanding the importance of diverse scattering mechanisms based on target characteristics. The technique adequately captures the clusters’ variations from one target to another according to their physical and geometrical properties.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s